169 research outputs found

    ATK-ForceField: A New Generation Molecular Dynamics Software Package

    Full text link
    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.Comment: 28 pages, 9 figure

    Late Pleistocene vertebrate trace fossils in the Goukamma Nature Reserve, Cape South Coast, South Africa

    Get PDF
    More than 100 Late Pleistocene trace fossil sites have been identified in aeolianites along a 275 kilometer stretch of the Cape south coast. A zone of concentration of such sites exists within the Goukamma Nature Reserve, both along the coast and along the Goukamma River. These sites provide insight into the Pleistocene fauna along the Cape south coast. Features include lion trackways, multiple elephant tracksites, a long trackway most likely attributable to Long-horned Buffalo, medium-sized carnivore tracks, avian tracks, equid tracks attributable to the giant Cape horse, numerous artiodactyl tracks, and burrow traces. The ephemeral nature of the tracksites makes regular surveys of these areas desirable, along with site documentation and trackway replication and preservation initiatives. The protected status of the area offers opportunities for geoheritage appreciation.JN

    What have we been thinking of? A critical overview of 40 years of student learning research in higher education

    Get PDF
    This paper is a response to the request from the organisers of the HECU4 conference to consider the following three questions in relation to the recent history of research into student learning in higher education: What do we know?, What do we need to know?, and What might we do about it? A survey of article titles reporting on research into student learning was carried out in three key higher education journals, and the results of this were then considered in the context of other, related research perspectives. The paper will first report on the results of this review, and then discuss these results in the context of theoretical moves in psychology and sociology over the same period of time. The trends identified in the higher education journals will then be compared to research into student learning in higher education which is published in two other disciplinary areas: Adult Education and Sociolinguistics. After raising some questions that arise from these comparisons, the final section of the paper will outline some suggestions about ways in which higher education researchers might begin to ‘think differently’ about learning and research in this field

    Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability

    Get PDF
    The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input

    NeuroGrid: recording action potentials from the surface of the brain.

    Get PDF
    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders

    Default Network Deactivations Are Correlated with Psychopathic Personality Traits

    Get PDF
    Background: The posteromedial cortex (PMC) and medial prefrontal cortex (mPFC) are part of a network of brain regions that has been found to exhibit decreased activity during goal-oriented tasks. This network is thought to support a baseline of brain activity, and is commonly referred to as the ‘‘default network’’. Although recent reports suggest that the PMC and mPFC are associated with affective, social, and self-referential processes, the relationship between these default network components and personality traits, especially those pertaining to social context, is poorly understood. Methodology/Principal Findings: In the current investigation, we assessed the relationship between PMC and mPFC deactivations and psychopathic personality traits using fMRI and a self-report measure. We found that PMC deactivations predicted traits related to egocentricity and mPFC deactivations predicted traits related to decision-making. Conclusions/Significance: These results suggest that the PMC and mPFC are associated with processes involving selfrelevancy and affective decision-making, consistent with previous reports. More generally, these findings suggest a link between default network activity and personality traits

    Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry

    Get PDF
    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery

    Development of the social brain from age three to twelve years

    Get PDF
    Human adults recruit distinct networks of brain regions to think about the bodies and minds of others. This study characterizes the development of these networks, and tests for relationships between neural development and behavioral changes in reasoning about others' minds ('theory of mind', ToM). A large sample of children (n = 122, 3-12 years), and adults (n = 33), watched a short movie while undergoing fMRI. The movie highlights the characters' bodily sensations (often pain) and mental states (beliefs, desires, emotions), and is a feasible experiment for young children. Here we report three main findings: (1) ToM and pain networks are functionally distinct by age 3 years, (2) functional specialization increases throughout childhood, and (3) functional maturity of each network is related to increasingly anti-correlated responses between the networks. Furthermore, the most studied milestone in ToM development, passing explicit false-belief tasks, does not correspond to discontinuities in the development of the social brain.National Science Foundation (U.S.) (Award 1122374)National Science Foundation (U.S.) (Award 095518)National Institutes of Health (U.S.) (Award R01-MH096914-05

    Connectivity precedes function in the development of the visual word form area

    Get PDF
    What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.National Institutes of Health (U.S.) (Grant F32HD079169)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant F32HD079169)National Institutes of Health (U.S.) (Grant R01HD067312)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R01HD067312
    • …
    corecore